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ABSTRACT 
Surveillance of antibiotic resistance and nosocomial 
infections is one of the most important functions of a 
hospital infection control program. We employed the 
association rule method for automatically identifying 
new, unexpected, and potentially interesting patterns 
in hospital infection control. We hypothesized that 
mining for low-support, low-confidence rules would 
detect unexpected outbreaks caused by a small num-
ber of cases. To build a framework, we preprocessed 
the data and added new templates to eliminate unin-
teresting patterns. 
 We applied our method to the culture data col-
lected over 3 months from 10 hospitals in the UPMC 
Health System. We found that the new process and 
system are efficient and effective in identifying new, 
unexpected, and potentially interesting patterns in sur-
veillance data. The clinical relevance and utility of this 
process await the results of prospective studies. 

 

INTRODUCTION 
Nosocomial infections — also known as hospital-
acquired infections — are infections that patients 
acquire during the course of their hospital stay. In 
developed countries, about 5 to 10% of patients ac-
quire nosocomial infection, while in the developing 
countries the rate exceeds 25%. Such nosocomial 
infections result in unexpected morbidity, mortality, 
and additional costs to hospitals [1]. Each year in the 
United States nosocomial infections affect 2 million 
patients, cost more that $4.5 billion, and account for 
half of all major hospital complications [2]. Without 
early detection and proper control of infected patients, 
other patients or healthcare staff can be infected. 
Thus early recognition of outbreaks and emerging 
resistance requires proactive surveillance at the hos-
pital and sub-hospital levels. 
Conventionally, nosocomial infection surveillance 
has relied on ward rounds, reviews of medical charts 
and paper-based reports of microbiologic results. 
Analyses are typically conducted by assembling hand 
written data or manually entering information into a 
computer database. These conventional infection 
control methods are time consuming, labor intensive 
and relatively inefficient for quantitative analyses and 
coping with the increasing complexity of antibiotic 
resistance. The potential value of computer-based 
surveillance is widely recognized and recent reports 
have described effective computer applications for 
infection control [3]. 

Extensive analysis of hospital data, however, re-
quires considerable time and resources, both of 
which few hospital epidemiologists have in reserve. 
Consequently, these data are underutilized and the 
patterns they contain go undiscovered [4]. Brossette 
presented a new method, association rule induction, 
to detect temporal patterns among infection-control 
surveillance data in reference [4]. 

Association rule induction is a powerful data min-
ing method for finding temporal trends in large data-
sets. The goal of data mining is to automate the proc-
ess of finding interesting temporal patterns. The out-
put of a data-mining method should be a “summary” 
of the data sets. Such goal is difficult to achieve due 
to the vagueness of the term “interesting”. The solu-
tion is to define various types of trends (patterns) and 
to look for only those defined trends in the data sets. 
One such type of trend is the association rule. 

A number of statistical strategies have been de-
veloped for automatically detecting temporal patterns 
in surveillance data. Historically, computer-assisted 
infection control surveillance research has focused on 
identifying high-risk patients including those on 
suboptimal antibiotic regimens, the use of expert 
systems to identify possible cases of nosocomial in-
fection, and the detection of temporal trends in the 
occurrence of predefined events [4]. 

From our discussions with infection control practi-
tioners, we discovered that one requirement for data 
mining is to discover unusual occurrences, rather 
than frequent, regularly-occurring patterns.  There-
fore, we designed an association rule method by ex-
tending Brosette’s approach [4] to assist traditional 
infection-control surveillance by automatically de-
tecting temporal trends – for example, trends in anti-
biotic resistance – that would not have been detected 
by either traditional or existing computer-assisted 
surveillance systems.  
 The main problem of association rule induction is 
that the number of possible rules to search over is 
intractable. However we do not want just any asso-
ciation rule produced by the method; we want “good” 
rules that are “expressive” and “reliable” as defined 
by standard measures of the “goodness” or “reliabil-
ity” of association rules (described in detail in Meth-
ods). Standard criteria are often not sufficient to re-
strict the set of rules to the interesting ones, espe-
cially when the thresholds for both measures are low. 
Efficient algorithms are needed to restrict the search 
space and check only a subset of all rules for tempo-
ral trends in the data, but if possible, without missing 
important rules. Therefore, we considered and evalu-



 

ated some additional rule evaluation measures, in-
cluding data preprocessing and the use of templates. 
 

METHODS 
Association Rules 
An association rule expresses an association between 
(sets of) items, which may be products of a super-
market or a mail-order company, special equipment 
options of a car, optional services offered by tele-
communication companies etc. For example, an asso-
ciation rule (variables’ definitions can be found in 
figure 3) hospital_unit=12S, drugcode=OXA, organ-
ismspecies=STAPHYLOCOCCUS, hospital=1 -> result-
code=R states that if we pick a patient record at ran-
dom and find out that it contained {hospi-
tal_unit=12S, drugcode=OXA, organismspe-
cies=STAPHYLOCOCCUS, hospital=1}, we can be 
confident that it also contained {resultcode=R}. An 
example of such a rule over basket data might be that 
98% of customers that purchase tires and auto acces-
sories also get automotive services done; finding all 
such rules is valuable for cross-marketing and at-
tached mailing applications. 
Definitions 
The following is a mathematical statement of the 
association rule method: let I = {i1, i2… i3} be a set 
of items, e.g., drug codes, organisms isolated, wards, 
etc. Let D be a set of transactions, e.g., culture re-
ports, where each transaction T is a set of items such 
that T ⊆ I.  We say that a transaction T contains X, 
where X ⊆ T. An association rule is a rule that states 
X associates with Y, denoted by X ⇒ Y, where X, Y ⊆ 
I, and X ∩ Y = ∅ (empty set). We define support of 
rule X ⇒ Y as the proportion of transactions in D 
with both X and Y, i.e., X ∪ Y. We define confidence 
of a rule X ⇒ Y as support(X∪Y)/support(X). Support 
is the percentage of transactions that the rule can be 
applied to (or, alternatively, the percentage of trans-
actions, in which it is correct). Confidence is the 
number of cases in which the rule is correct relative 
to the number of cases in which it is applicable (and 
thus is equivalent to an estimate of the conditional 
probability of the consequent of the rule given its 
antecedent). A valid rule must at least satisfy the two 
criteria: the support and confidence must be greater 
than the user-specified thresholds--minimum support 
and minimum confidence respectively. Furthermore, 
itemsets with minimum support are called large item-
sets, and all others are called small itemsets. The left 
hand side of a rule is called the cause part, and the 
right hand side of the rule is called the result part. 
The Apriori Algorithm 
In this study, we chose the apriori algorithm [5] for 
association rule induction. This algorithm works in 
two steps. The first step determines the large itemsets 
that have at least the given minimum support (i.e., 
occur at least in a given percentage of all transac-
tions). In the second step association rules are gener-
ated from the large itemsets found in the first step. 
Usually the first step is more important, because it 
accounts for the greater part of the processing time. 

In order to make it efficient, the apriori algorithm 
exploits the observation that the superset of a small 
itemset (i.e., an itemset without minimum support) 
can not be a large itemset (with enough support) [6]. 
Figure 1 is a frame of the Apriori algorithm.  
 
 
1) L1 = {Large 1-itemsets}; 
2) for ( k = 2; Lk-1 ≠ ∅; k++) do begin 
3)  Ck = apriori-gen(Lk-1); // new candidates 
4) forall transactions t ∈ D do begin 
5)     Ct = subset(Ck, t);  // candidates contained in t 
6)     forall candidate c ∈ Ct do 
7)  c.count++; 
8) end 
9) Lk = {c ∈ Ck | c.count ≥ minsup} 
10)end 
11)Answer = ∪kLk; 
 
Figure 1: Algorithm Apriori 
 
The apriori-gen function takes as argument Lk-1, the 
set of all large (k-1)-itemsets. It returns a superset of 
the set of all large k-itemsets. The function works as 
follows. First, in the join step, join Lk-1 with Lk-1. Next, 
in the prune step, we delete all itemsets c ∈ Ck such 
that some (k - 1)-subset of c is not in Lk-1 [5]. 
Event Capture 
An event describes an interesting change in the con-
fidence of an association rule over time.  
 We partitioned patients’ records into time slices, 
according to the date when the information was re-
corded. Each time slice covers one month of records 
since monthly time slice often has enough samples to 
do association rule induction. 
 Each association rule generated is compared to a 
set of user-defined rule templates that describe “fla-
vors” of interesting and uninteresting rules. Since 
rule templates contain domain knowledge, domain 
experts must handcraft them. In general, an expert 
usually has an idea of what types of rules are interest-
ing, or may know of some types that are never inter-
esting [4]. There are two types of rule templates: in-
clude templates and exclude templates. An associa-
tion rule passes a set of templates if it satisfies at 
least one include template in the set and does not 
satisfy any exclude template in the set [4]. Associa-
tion rule templates can be found in Brossette [4]. 

We took advantage of the templates developed by 
Brossette et al [4]. In addition to those templates, we 
also added the templates as shown in Figure 2. Based 
on these templates, every association rule must in-
clude organismspecies and drugcode attributes in 
their cause parts (left hand side of⇒), other wise the 
rule will be filtered out, since it is less interesting or 
not interesting at all to hospital infection control ex-
perts. For the result part (right hand side of⇒) of a 
rule, the resultcode must exist.  



 

Type Left  Right Explanation 
Exclude (resultcode) ⇒ (Anything) Want test result 

information on 
the right only. 

Exclude (Anything) ⇒ (Anything 
except re-
sultcode)  

Want every rule 
must include 
resultcode as 
result 

Include (oganismcode 
AND drug-

code) 

⇒ 
 

(Anything) Want every rule 
must include 
oganismcode 
and drugcode in 
left. 

 
Figure 2: Additional association rule templates 
 

The history is a database that holds association 
rules and their information, like support, confidence, 
et al, for different data partitions. Only association 
rules that pass the rule templates are stored in the 
history list. 

For each pair of time slices, a chi-square-base test 
is performed to determine whether there is a signifi-
cant difference in the confidence of the rule between 
time slices. Association rules passing this test will be 
output as events. 
Chi-square-base Test 
The most common method of measuring strength of 
association is the calculation of χ2 on one degree of 
freedom from the comparison of two binomials. The 
calculation is relatively simple and with count data 
(numbers of individuals exposed or not, numbers of 
individuals with the outcome or not) is identical for 
all fourfold tables, and it does not matter whether 
they originate from cohort studies, case-referent stud-
ies, or prevalence studies.  
  The conventional interpretation of these prob-
abilities is that a P value of <0.05 indicates that the 
observed difference is unlikely to have occurred by 
chance alone and, thus, somehow must represent a 
real difference; another way of stating this is that we 
are 95% certain that this observed difference could 
not have arisen by chance alone.  
Dataset—Microbiology reports 
The Health System Resident Component (HSRC) 
located in the UPMC Health System was developed 
by the RODS laboratory starting in 1999. The HSRC 
receives microbiological HL7 messages in real time 
from 10 hospitals including 131 hospital units [7]. 
The study period was from May 1st, 2000 to July 31st, 
2000. Within the study period, there were 941 micro-
biology transactions total. Patients’ medical record 
number (MRN) was encrypted to protect patient pri-
vacy. The data set also included coded elements—
hospital, ward, attending doctor, etc. 
Data Preprocessing 
Each patient has three duplicate reports: preliminary, 
intermediate and final report. We used three data 
elements as a unique key — patient’s name, acces-

sion number and sampling date — to remove dupli-
cates. We kept only the most recent records. We store 
the culture data in three tables: method, organism and 
patient. Attributes in these tables are: ecrypted_pid, 
gender, age, hospital, hospital_unit, attending_doctor, 
lab_id, isolateid, accession_number, sampling_time, 
date_spec_reported, drugname, dat_spec_received, 
organismcode, drugcode, resultcode, rultname, or-
ganismname, methodcode, methodname. 
 According to domain experts’ suggestion, we 
categorized patients’ ages into four categories: 0–10 
years, 11–20 years, 21–60 years, 61 years and up. 
We grouped organisms at the level of species. We 
designed these groupings to reduce the amount of 
output without losing interesting information. We 
also eliminated several uninteresting attributes such 
as isolateid, drugname (duplicate information that is 
recorded in drugcode), etc. from the data set. We 
combined the three original tables into one transac-
tion table. 

The reason to choose May, June and July as study 
period is as follows: First a three month period will 
contain enough records to do association rule induc-
tion; second; second these three months belong to the 
same season, so we eliminate the influence of sea-
sonal variations. We aggregated data by month since 
a monthly time slice often has enough samples to do 
association rule induction.  
 Figure 3 is a summary of the experiment dataset 
after data preprocessing. 
 

Attributes in 
Culture  
Transaction 
Table 

Variable descriptions 

Num-
ber of 
differ-
ent 
values 

organismspe-
cies Species of the organism 30 

drugcode Drugs  used in organism’s sus-
ceptibility test 48 

resultcode 
Results of organism’s suscepti-
bility test: Sensitive (S), Resis-
tant (R), or Intermediate (I). 

3 

gender Male or female 2 

agegroup 

1: age 0 to 10 
2:age 11 to 20 
3: age 21 to 60 
4: age 61 and above 

4 

hospital Hospital ID 10 
hospital_unit Hospital ward 131 

attend-
ing_doctor Attending doctor 377 

month The month when the organism 
sensitive tests were performed. 3 

Date Specimen collected date 31 
 
Figure 3: Summary of Experiment Dataset after Data 
Preprocessing 



 

The Infection Control Surveillance System 
Traditional association rule data mining applications 
focus on discovering high-support, high-confidence 
association rules, for these rules can be used for clas-
sification. In reference [4], Brossette pointed out that 
while high-support, high-confidence rules will be 
useful in the surveillance paradigm, high-support, 
low-confidence rules would often be more useful. If 
B occurs every time A occurs, and A occurs fre-
quently, then we maintain that the rule A ⇒ B will 
probably be known or trivial and therefore uninter-
esting. However, if B occurs infrequently with A and 
A occurs relatively frequently, then A ⇒ B is a low-
confidence association rule, and changes in the con-
fidence of A ⇒ B are likely to go undetected [8]. 

From our discussions with hospital infection con-
trol practitioners, we discovered that low support low 
confidence rules may be interesting.  The reason is 
simple: For a period of one year, patients’ records 
come in thousands. Each attribute may have hun-
dreds of (for example, the attending doctor) or tens of 
(for example, the organism code) values. Their com-
binations are like several thousand different products 
in the supermarket case. There can be billions or 
even trillions of possible association rules. An unex-
pected increase in a particular event can be easily lost 
among these various possible patterns, since the 
event’s support will be very low. Thus, by setting a 
relatively high support threshold, potential interesting 
patterns are likely to go undetected. In our research, 
we set the support and confidence thresholds to 0.1%, 
so that we avoided the chance of missing interesting 
unusual patterns. Since our system is focused on 
finding interesting rules that may have been ignored 
by existing association rule induction systems, we 
further restrict our search to association rules with 
support less than 1% and confidence less than 30%. 
Thus, only low support and low confidence rules are 
analyzed.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 is the flow chart of our current system. 
After data preprocessing, we divide the data into dif-
ferent time slices, according to users’ specification. 
We use apriori algorithm to discover all association 
rules that satisfy the predefined support and confi-
dence thresholds and then pass these rules through 
various templates. Only association rules that passed 
all the templates (might be interesting to the users) 
will be stored in the history list, which is organized 
by time order. At the same time, we generate all pos-
sible time pairs out of these time slices. According to 
these pairs of time slices, every association rule in the 
history list will undergo a p-value test. Association 
rules which pass the test will be output as captured 
events. 

 
RESULTS 

Within the study period, a total of 49 low support 
(0.1% <support< 1%), low confidence (0.1% <confi-
dence< 30%) events were captured. The expert re-
viewer was easily able to inspect all of them in less 
than a half-hour. From our discussion with infection 
control experts, they found 37 out of the 49 events 
(75.51%) encode interesting patterns, which may 
have potential significance for their research. Repre-
sentative examples of the different classes of events 
are shown in figure 5.  
 
drugcode=OXA, hospital=14, gender=M, organ-
ismspecies=STAPHYLOCOCCUS, -> resultcode=R   

 Confidence Support 
June 28.6% 0.1% 
July 5.9% 0.1% 

Meaning: a significant decrease in clindamycin-
resistant coagulase-positive Staphylococcus among 
male patients in hospital 14, from June 2000 to July 
2000. 
 
organismspecies=ENTEROCOCCUS, gender=M,  
drugcode=AM, agegroup=4 -> resultcode=R  

 Confidence Support 
June 13.3% 0.1% 
July 28.6% 0.1% 

Meaning: a significant increase in Ampicillin-
resistant Gram Positive Cocci Enterococcus among 
male patients age 60 and up, from June 2000 to July 
2000. 
 
drugcode=CFEP, hospital=1  organismspe-
cies=PSEUDOMONAS -> resultcode=I 

 Confidence Support 
May 10% 0.2% 
June 22.2% 0.2% 

Meaning: a significant increase in Cefepime inter-
mediate resistant Pseudomonas in hospital 1, from 
May 2000 to June 2000.                                                                                                 
 
Figure 5: Sample Output 
 

After data preprocessing (eliminating duplicates, 
removing uninteresting attributes, and categorizing 
age and species into a small number of categories), 

    Figure 4: System Flow Chart  

Data mining association rules in each time slice 

Partition data into time slices 

Pass all association rules through templates 

Store association rules and their parameters into history list

For every association rule in the history list pass a p-value test 

Output Captured Events  

Generate pairs of time slices

Data Preprocessing 



 

99% of uninteresting patterns were filtered out, and 
system run time was reduced from one hour to a 
more reasonable several seconds per time slice pair. 
Furthermore our three additional association rule 
templates in Figure 2 reduced the number of rules in 
the history by an additional 70%. 

 
DISCUSSION 

The results of this study indicate that low-support, 
low-confidence rules may have significant utility for 
infection control surveillance.  This result means that 
in addition to mining for high-support, low-
confidence association rules described in [4], it may 
also be important to mine for low-confidence, low-
support association rules.  
 Based on the discussion with infection control 
practitioners, they found that although not all events 
were interesting, some suggested potential nosoco-
mial outbreaks and changes of patterns in microbial 
resistance.  This approach also makes it easy for ex-
perts to inspect events that might otherwise be missed 
by usual (manual) infection control surveillance 
methods. 

Because a large number of low-support, low-
confidence association rules can be found even in 
small data sets, a successful implementation of the 
process depends on efficient algorithms and on data 
selection and preprocessing strategies. We took sev-
eral approaches to improving the efficiency of our 
association-rule mining system.  First, we used the 
previously developed apriori algorithm.  Second, we 
performed significant data pre-processing to reduce 
the search space by 99%.  Lastly, we employed a set 
of rule templates to filter out rules of less importance 
or no importance to infection control practitioners.  
In doing so, we were able to mine a set of microbiol-
ogy culture data spanning three months (using a one-
month time slice) in a reasonable amount of time.   

 
CONCLUSIONS  

In this study, we employed new criteria (low-support, 
low-confidence) to automatically identify new, unex-
pected, and potentially interesting patterns in hospital 
infection control.  The application of these new crite-
ria raised a significant issue of efficiency of the ap-
proach to rule mining.  To address this issue, we used 
the fast apriori algorithm, applied additional rule 
templates and performed data preprocessing. We 
found that low support, low-confidence rules are 
likely to have value for infection control surveillance.  
Furthermore, our approach to efficiency achieved 
reasonable running times. 
 

FUTURE WORK 
Future work includes formal evaluation of the rules 
generated by our approach.  One simple approach is 
to randomly permute the data sets and check if the 
association rule method finds any interesting rules 
given the same templates. We also want to further 
explore whether the actions taken by infection con-

trol practitioners in response to such rules can reduce 
costs, morbidity, and mortality of nosocomial infec-
tions. 
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